Cﬁapter 4
Model of Inexact Reasoning in Medicine

4.1 Introduction

Efforts to develop techniques for modeling clinical decision mak-
ing have had a dual motivation. Not only has their potential clinical
significance been apparent, but the design of such programs has
required an analytical approach to medical reasoning that has in turn
led to a distillation of decision criteria that in some cases had never
been explicitly stated before. It is a fascinating and educational
process for experts to reflect on the reasoning steps that they have
always used when providing clinical consultations.

As discussed in § 1.3, several programs have successfully modeled
the diagnostic process [Gorry, 1968a, 1973; Warner, 1964]. Each of
these examples has relied upon statistical decision theory as reflected
in the use of Bayes’ Theorem for manipulation of conditional proba-
bilities. Use of the theorem, however, requires either large amounts
of valid background data or numerous approximations and assump-
tions. The success of Gorry and Barnett’s early work [Gorry,
1968a], and a similar study by Warner et al. using the same data
[Warner, 1964], depended to a large extent upon the availability of
good data regarding several individuals with congenital heart disease.
Gorry et al. [Gorry, 1973b] have had similar access to data relating
the symptoms and signs of acute renal failure to the various potential
etiologies.

tMuch of the material in this chapter has appeared in an article in Mathematical
Biosciences | Shortliffe, 1975a]. That paper was co-authored with Dr. Bruce Buchanan who
contributed substantially to the development of the model.
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Although conditional probability provides useful results in areas of
medical decision making such as those I have mentioned, vast por-
tions of medical experience suffer from so little data and so much
imperfect knowledge that a rigorous probabilistic analysis, the ideal
standard by which to judge the rationality of a physician’s decisions,
is not possible. It is nevertheless instructive to examine models for
the less formal aspects of decision making. Physicians seem to use an
ill-defined mechanism for reaching decisions despite a lack of formal
knowledge regarding the interrelationships of all the variables that
they are considering. This mechanism is often adequate, in well-
trained or experienced individuals, to lead to sound conclusions on
the basis of a limited set of observations. (Intuition may also lead to
unsound conclusions, as noted by Schwartz ez al. [Schwartz, 1973].)

These intuitive and inexact aspects of medical reasoning are re-
flected in an argument expounded by Helmer and Rescher [ Helmer,
1960]. They assert that the traditional concept of “exact” versus
“inexact” science, with the social sciences accounting for the second
class, has relied upon a false distinction usually reflecting the pres-
ence or absence of mathematical notation. They point out that only
a small portion of natural science can be termed exact—areas such as
pure mathematics and subfields of physics in which some of the
exactness ‘“has even been put to the ultimate test of formal axiomati-
zation.” In several areas of applied natural science, on the other
hand, decisions, predictions, and explanations are only made after
exact procedures are mingled with unformalized expertise. Society’s
general awareness regarding these observations is reflected in the
common references to the “artistic” components in the “science of
medicine.”

This chapter examines the nature of such nonprobabilistic and
unformalized reasoning processes, considers their relationship to
formal probability theory, and proposes a model whereby such
incomplete “artistic” knowledge might be quantified. We have de-
veloped this model of inexact reasoning in response to MYCIN’s
needs; i.e., the goal has been to permit the opinion of experts to
become more generally available to nonexperts. The model is, in
effect, an approximation to conditional probability. Although con-
ceived with MYCIN’s problem area in mind, it is potentially appli-
cable to any domain in which real world knowledge must be com-
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bined with expertise before an informed opinion can be obtained to
explain observations or to suggest a course of action.

The presentation begins with a brief discussion of Bayes’ Theorem
as it has been utilized by other workers in this field. The theorem
serves as a focus for discussion of the clinical problems that we
would like to solve by using computer models. The potential applica-
bility of the proposed decision model is then introduced in light of
MYCIN’s rule-based design. Once the problem has been defined in
this fashion, the criteria and numerical characteristics of our quantifi-
cation scheme are proposed. The chapter concludes with a discussion
of how the model is being used by MYCIN when it offers opinions to
physicians regarding antimicrobial therapy selection.

4.2 Problem Formulation

The medical diagnostic problem can be viewed as the assignment
of probabilities to specific diagnoses after analyzing all relevant data.
If the sum of the relevant data (or evidence) is represented by E, and
D; is the ith diagnosis (or “disease”) under consideration, then
P(D; IE) is the conditional probability that the patient has disease i in
light of the evidence E. Diagnostic programs have traditionally
sought to find a set of evidence that allows P(D;|E) to exceed some
threshold, say .95, for one of the possible diagnoses. Under these
circumstances the second ranked diagnosis is sufficiently less likely
(<.05) that the user is content to accept disease i as the diagnosis
requiring therapeutic attention. (Several programs have also included
utility considerations in their analyses. For example, an unlikely but
lethal disease that responds well to treatment may merit therapeutic
attention because P(D;|E) is nonzero, even though very small.)

Bayes’ Theorem is useful in these applications because it allows
P(D;|E) to be calculated from the component conditional probabili-
ties:

p(D)E)= T PIPEID)
S P(D)P(EID)

Jj=1

In this representation of the theorem, D; is one of n disjoint diag-
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noses. P(D;) is simply the a priori probability that the patient has
disease i before any evidence has been gathered. P(E|D;) is the
probability that a patient will have the complex of symptoms and
signs represented by E, given that he has disease D;.

I have so far ignored the complex problem of identifying the
“relevant” data that should be gathered in order to diagnose the
patient’s disease. Evidence is actually acquired piece-by-piece, the
necessary additional data being identified on the basis of the likely
diagnosis at any given time. Diagnostic programs that mimic the
process of analyzing evidence incrementally often use a modified
version of Bayes’ Theorem that is appropriate for sequential diag-
nosis [Gorry, 1968a] :

Let E; be the set of all observations to date, and S; be some new piece of data.
Furthermore, let £ be the new set of observations once Sy has been added to £, .
Then

p(0|5)= P (SID&E)P(D|E)

2 P(SIID&E)P(D)E)

The successful programs that use Bayes’ Theorem in this form
required huge amounts of statistical data, not merely P(D;|S;,) for
each of the pieces of data Sy in E, but also the interrelationships of
the S, within each disease D;. For example, although S, and S, are
independent over all diseases, it may be true that S; and S, are
closely linked for patients with disease D;. Thus relationships must
be known within each D;; overall relationships are not sufficient. The
congenital heart disease programs [Gorry, 1968a; Warner, 1964]
were able to acquire all the necessary conditional probabilities from a
survey of several hundred patients with confirmed diagnoses and thus
had nonjudgmental data on which to base their Bayesian analyses.

Edwards has summarized the kinds of problems that can arise
when an attempt is made to gather the kinds of data needed for
rigorous analysis [W. Edwards, 1972]:

.. . My friends who are expert about medical records tell me that to attempt
to dig out from even the most sophisticated hospital’s records the frequency of
association between any particular symptom and any particular diagnosis is next
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to impossible—and when I raise the question of complexes of symptoms, they
stop speaking to me. For another thing, doctors keep telling me that diseases
change, that this year’s flu is different from last year’s flu, so that symptom-dis-
ease records extending far back in time are of very limited usefulness. Moreover,
the observation of symptoms is well-supplied with error, and the diagnosis of
diseases is even more so; both kinds of errors will ordinarily be frozen per-
manently into symptom-disease statistics. Finally, even if diseases didn’t change,
doctors would. The usefulness of disease categories is so much a function of
available treatments that these categories themselves change as treatments
change—a fact hard to incorporate into symptom-disease statistics.

All these arguments against symptom-disease statistics are perhaps somewhat
overstated. Where such statistics can be obtained and believed, obviously they
should be used. But I argue that usually they cannot be obtained, and even in
those instances where they have been obtained, they may not deserve belief.

An alternative to exhaustive data collection is to use the knowl-
edge that an expert has about the disease—partly based upon experi-
ence and partly on general principles—to reason about diagnoses. In
the case of this judgmental knowledge acquired from experts, the
conditional probabilities and their complex interrelationships cannot
be acquired in an exhaustive manner. Opinions can be sought and
attempts made to quantify them, but the extent to which the
resulting numbers can be manipulated as probabilities is not clear. We
shall explain this last point more fully as we proceed. First, let us
examine some of the reasons that it might be desirable to construct a
model that allows us to avoid the inherent problems of explicitly
relating the conditional probabilities to one another.

As was pointed out in § 3.2, a conditional probability statement
is, in effect, a statement of a decision criterion or rule. For example,
the expression P(D;|S;)=X can be read as a statement that there is a
100X % chance that a patient observed to have symptom S) has
disease D;. Stated in rule form:

IF: THE PATIENT HAS SIGN OR SYMPTOM Sk
THEN: CONCLUDE THAT HE HAS DISEASE Di WITH PROBABILITY X

I shall often refer to statements of conditional probability as decision
rules or decision criteria in the diagnostic context. The value of X for
such rules may not be obvious (e.g., “y strongly suggests that z is
true” is difficult to quantify), but an expert may be able to offer an
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estimate of this number based upon clinical experience and general
knowledge, even when such numbers are not readily available other-
wise.

A large set of such rules obtained from textbooks and experts
would clearly contain a large amount of medical knowledge. It is
conceivable that a computer program could be designed to consider
all such general rules and to generate a final probability of each D;
based upon data regarding a specific patient. Bayes’ Theorem would
only be appropriate for such a program, however, if values for
P(S; ID;) and P(S; ID;&S,) could be obtained. As has been noted,
these requirements become unworkable, even if the subjective proba-
bilities of experts are used, in cases where a large number of diag-
noses (hypotheses) must be considered. The first would require
acquiring the inverse of every rule, and the second requires obtaining
explicit statements regarding the interrelationships of all rules in the
system.

In short, we would like to devise an approximate method that
allows us to compute a value for P(D; [E) solely in terms of P(D;1S,),
where E is the composite of all the observed S; (see § 4.5 and 4.6).
Such a technique will not be exact, but since the conditional proba-
bilities reflect judgmental (and thus highly subjective) knowledge, a
rigorous application of Bayes’ Theorem will not necessarily produce
accurate cumulative probabilities either. Instead we look for ways to
handle decision rules as discrete packets of knowledge and for a
quantification scheme that permits accumulation of evidence in a
manner that adequately reflects the reasoning process of an expert
using the same or similar rules.

4.3 Mycin’s Rule-Based Approach

As has been discussed, MYCIN’s principle task is to determine the
likely identity of pathogens in patients with infections and to assist
in the selection of a therapeutic regimen appropriate for opposing
the organisms under consideration. In Chapter 3, we explained how
MYCIN models the consultation process, utilizing judgmental knowl-
edge acquired from experts in conjunction with certain statistical
data that are available from the clinical microbiology laboratory and
from patient records. MYCIN’s decision rules are similar in form to
those just introduced in § 4.2.
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It is useful to consider the advantages provided by a rule-based
system for computer use of judgmental knowledge. It should be
emphasized that we see these advantages as being sufficiently strong
in certain environments that we have devised an alternative and
approximate approach that parallels the results available from using
Bayes’ Theorem. I do not argue against the use of Bayes’ theory in
those medical environments in which sufficient data are available to
permit adequate use of the theorem.

The advantages of rule-based systems for diagnostic consultations
include:

(1) the use of general knowledge (from textbooks or experts) for considera-
tion of a specific patient; even well-indexed books may be difficult for
a nonexpert to use when considering a patient whose problem is not
quite the same as those of patients discussed in the text;

(2) the use of judgmental knowledge for consideration of very small classes
of patients with rare diseases about which good statistical data are not
available;

(3) ease of modification; since the rules are not explicitly related to one
another and there need be no prestructured decision tree for such a sys-
tem, rule modifications and the addition of new rules need not require
complex considerations regarding interactions with the remainder of the
system’s knowledge;

(4) facilitated search for potential inconsistencies and contradictions in the
knowledge base; criteria stored explicitly in packets such as rules can be
searched and compared without major difficulty;

(5) straightforward mechanisms for explaining decisions to a user by identi-
fying and communicating the relevant rules;

(6) an augmented instructional capability; a system user may be educated
regarding system knowledge in a selective fashion, i.e., only those por-
tions of the decision process that puzzle him need be examined.

One of MYCIN’s rules, which I shall use for illustrative purposes
throughout this chapter, is the following:

IF: 1) THE STAIN OF THE ORGANISM IS GRAM POSITIVE, AND
2) THE MORPHOLOGY OF THE ORGANISM IS COCCUS, AND
3) THE GROWTH CONFORMATION OF THE ORGANISM IS
CHAINS

THEN: THERE IS SUGGESTIVE EVIDENCE (.7) THAT THE IDENTITY
OF THE ORGANISM 'S STREPTOCOCCUS
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This rule was acquired from an expert in infectious disease therapy
and reflects his belief that gram positive cocci growing in chains are
apt to be streptococci. When asked to weight his belief in this
conclusion, he indicated a 70% belief that the conclusion was valid.
In the English language version of the rules, the program uses phrases
such as “suggestive evidence” as in the above example. However, the
numbers following these terms, indicating degrees of certainty, are all
that is used in the model. The English phrases are not given by the
expert and then quantified; they are, in effect, “canned-phrases”
used only for translating rules into English representations. The
prompt used for acquiring the certainty measure from the expert is:
“On a scale of 1 to 10, how much certainty do you affix to this
conclusion?”

Translating to the notation of conditional probability, the rule
above at first seems to say P(H, IS, &S, &S;)=.7 where H, is the
hypothesis that the organism is a streptococcus, S, the observation
that the organism is gram positive, S, that it is a coccus, and S5 that
it grows in chains. Questioning of the expert gradually reveals,
however, that despite the apparent similarity to a statement regard-
ing a conditional probability, the number .7 differs significantly from
a probability. The expert may well agree that P(H, |S; &S, &S5 )=.7,
but he becomes uneasy when he attempts to follow the logical
conclusion that therefore P(not.H, IS, &S,&S5)=.3. The three ob-
servations are evidence (to degree .7) in favor of the conclusion that
the organism is a streptococcus and should not be construed as
evidence (to degree .3) against streptococcus. I shall refer to this
problem as Paradox 1 and return to it later in the exposition after
the interpretation of the .7 in the rule above has been introduced.

It may at first seem tempting to conclude that the expert is
irrational if he is unwilling to follow the implications of his proba-
bilistic statements to their logical conclusions. Another interpreta-
tion, however, is that the numbers he has given should not be
construed as probabilities at all, that they are judgmental measures
that reflect a level of belief. The nature of such numbers, and the
very existence of such concepts, have interested philosophers of
science for the last half century. Some of these philosophical issues
are briefly discussed in § 4.4. I then proceed to a detailed presenta-
tion of the proposed quantitative model. In the last section of this
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chapter, I shall show how the model has been implemented for
ongoing use by the MYCIN program.

4.4 Theoretical Background

Although probability is a familiar concept defined axiomatically in
any introductory statistics book [Parzen, 1960], the P-function has
been subjected to a variety of interpretations [Swinburne, 1973;
Harré, 1970; Ramsey, 1931; Savage, 1954; deFinetti, 1972; Keynes,
1921; Carnap, 1950]. I shall not describe all of these because, as has
been observed, imperfect knowledge and the dependence of decisions
on individual judgments make the P-function no longer seem entirely
appropriate for modeling many of the decision processes in medical
diagnosis.

Carmap [Carnap, 1950] and Hempel [Hempel, 1945] discuss an
interpretation of probability known as confirmation. Carnap distin-
guishes confirmation from the traditional P-function, defining the
former as the degree to which an hypothesis is supported by an
evidence statement. Thus, it should be noted that the term confirma-
tion does not indicate that an hypothesis is proven but rather that an
observation lends credence to it. The measure of support is commonly
represented by the notation Clh,e], i.e., the degree of confirmation
of the hypothesis # based upon the observation e.

Quantifying confirmation and then manipulating the numbers as
though they are probabilities quickly leads to apparent inconsis-
tencies or paradoxes [Carnap, 1950; Hempel, 1945; Barker, 1957;
Salmon, 1973, 1966]. Carl Hempel [Hempel, 1945] presented his
famous Paradox of the Ravens early in his discussion of the logic of
confirmation. Let %, be the statement that “All ravens are black”
and %, the statement that “All nonblack things are nonravens.”
Clearly h; is logically equivalent to 4,. If one were to draw an
analogy with conditional probability, it might at first seem valid,
therefore, to assert that C[h,,e]=C[h,,e] for all e However, it
appears counter-intuitive to state that the observation of a green vase
supports /2, even though the observation does seem to support #4,.
Clh,e]l is therefore different from P(hle) for it seems somehow
wrong that the observation of a vase could logically support an
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assertion about ravens. A re-examination of this paradox in light of
our proposed quantification scheme is included as an appendix to
this chapter (Appendix 4.A).

In their analyses of confirmation, several authors [Harré, 1970;
Camap, 1950; Hempel, 1945; Barker, 1957; Salmon, 1973, 1966]
note that C[#,e] does not equal 1=C[not.n,e], an observation remi-
niscent of our Paradox 1 from § 4.3. Furthermore, they recognize
the need for an independently introduced disconfirmation function
because, as Harré puts it [Harré, 19701, “to confirm something to
ever so slight a degree is not to disconfirm it at all, since the
favourable evidence for some hypothesis gives no support whatever
to the contrary supposition in many cases.”

The inadequacies of probability in the analysis of real-world prob-
lems have led to a variety of alternate approaches. These include the
theory of “fuzzy sets” [Zadeh, 1965 ; Goguen, 1968], the theory of
“choice” [Tversky, 1972; Luce, 1965], and the logic of “surprise”
[Shackle, 1952, 1955]. However, the theory of confirmation seems
to parallel more closely the kind of decision task involved in medical
diagnosis. We have therefore sought to develop a quantification
scheme that reflects the observations of philosophers who have dealt
with the logic of confirmation. However, the scheme I propose meets
desiderata derived intuitively from the problem at hand rather than
from a formal list of acceptability criteria. Such criteria are proposed
by several authors such as Carnap [Carnap, 1950], Swinburne
[Swinburne, 1970], Salmon [Salmon, 19661, and Tornebohm,
[Tornebohm, 1966]. Although our model was not developed with
any such list of criteria as guidance, I shall show (§ 4.5 and 4.6)
that the technique we propose satisfies Tornebohm’s criteria in light
of the approximation mechanisms that we have introduced for the
combination of incrementally acquired evidence.

4.5 Proposed Model of Evidential Strength

This section introduces our quantification scheme for modeling
inexact medical reasoning. It begins by defining the notation that we
use and by describing the terminology. A formal definition of the
quantification function will then be presented. The remainder of the
section discusses the characteristics of the defined functions. It closes
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with consideration of the model when it is compared to Torne-
bohm’s criteria for acceptability of a quantification technique regard-
ing evidential strength [ Tornebohm, 1966].

Although the proposed model has several similarities to a con-
firmation function such as those mentioned above, I shall introduce
new terms for the measurement of evidential strength. This conven-
tion will allow me to clarify from the outset that I seek only to
devise a system that captures enough of the flavor of confirmation
theory that it can be used for accomplishing our computer-based
task. We have chosen ““Belief” and ‘Disbelief”” as our units of
measurement, but these terms should not be confused with their
formalisms from epistemology. The need for two measures was
introduced above in our discussion of a disconfirmation measure as
an adjunct to a measure for degree of confirmation. The notation
will be as follows:

(1) MB[A,e]=X means “The measure of increased Belief in the hypothesis
h, based on the evidence e, is X

(2) MD[h,e]=Y means “The measure of increased Disbelief in the hypothesis
h, based on the evidence e, is Y

The evidence e need not be an observed event, but may be a
hypothesis (itself subject to confirmation). Thus, I may write
MBI[#%,,h,] to indicate the measure of increased Belief in the hypo-
thesis /2, given that the hypothesis 4, is true. Similarly MD[#4, 4,1 is
the measure of increased Disbelief in hypothesis %, if hypothesis 7,
is true.

To illustrate in the context of the sample rule from MYCIN, consi-
der e = “The organism is a gram positive coccus growing in chains’’ and
h = “The organism is a streptococcus.” Then, MB[%,e]=.7 according
to the sample rule given us by the expert. The relationship of the
number .7 to probability will be explained as I proceed. For now let
me simply state that the number .7 reflects the extent to which the
expert’s Belief that /4 is true is increased by the knowledge that e is
true. On the other hand, MD[%,e]=0 for this example, i.e., the expert
has no reason to increase his Disbelief in 4 on the basis of e.

In accordance with subjective probability theory, it may be
argued that the expert’s personal probability P(%) reflects his
Belief in # at any given time. Thus 1—P(%) can be viewed as an
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estimate of the expert’s Disbelief regarding the truth of 4. If P(he) s
greater than P(h), the observation of e increases the expert’s Belief in
h while decreasing his Disbelief regarding the truth of 4. In fact, the
proportionate decrease in Disbelief is given by the ratio:

P(hle)— P(h)
1-P(h)

This ratio is called the measure of increased Belief in /4 resulting from
the observation of ¢, i.e., MB[/4,e].

Suppose, on the other hand, that P(4le) were less than P(n). Then
the observation of e would decrease the expert’s Belief in z while
increasing his Disbelief regarding the truth of 4. The proportionate
decrease in Belief is in this case given by the ratio:

P(h) = P(hle)
P(h)

We call this ratio the measure of increased Disbelief in % resulting
from the observation of e, i.e., MD[%,e]. Tornebohm suggests a
similar measure of evidential strength [Tornebohm, 1966], but uses
C(H) instead of P(H), where C(H) is the amount of information
contained in AH.

To summarize these results in words, we consider the measure of
increased Belief, MB[/Z,e], to be the proportionate decrease in Dis-
belief regarding the hypothesis / that results from the observation e.
Similarly, the measure of increased Disbelief, MD[#,e], is the propor-
tionate decrease in Belief regarding the hypothesis % that results from
the observation e, where Belief is estimated by P(%) at any given time
and Disbelief is estimated by 1=P(h). These definitions correspond
closely to the intuitive concepts of confirmation and disconfirmation
that we have discussed above. Note that since one piece of evidence
cannot both favor and disfavor a single hypothesis, when
MB[#&,e]1>0, MD[h,e]1=0 and when MDI4,e]>0, MB[4,e]1=0. Fur-
thermore, when P(kle)=P(h) the evidence is independent of the
hypothesis (neither confirms nor disconfirms) and MB[he]=
MD[4,e]=0.

The above definitions may now be specified formally in terms of
conditional and a priori probabilities:
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i if P(h)=1,
MBJ[h,e]= { max[P(hle), P(h)]— P(h)
max[1,0]— P(h)
1 , if P(h)=0,
MD[#4,e]= { min[ P(hle), P(h)]— P(h)
min[1,0]— P(h)

otherwise,

otherwise.

Note that here P(%) is used to denote a priori probabilities. More
correctly they might be written as P(%10), i.e., the probability of # on
no evidence. Examination of these expressions will reveal that they
are identical to the definitions introduced above. The formal defini-
tion is introduced, however, to demonstrate the symmetry between
the two measures. In addition, we define a third measure, termed a
certainty factor (CF) that combines the MB and MD in accordance
with the following definition:

CF[h,e]=MB[h,e]— MD[h,e]

The certainty factor thus is an artifact for combining degrees of
Belief and Disbelief into a single number. Such a number is needed in
order to facilitate comparisons of the evidential strength of compet-
ing hypotheses. The use of this composite number will be described
below in greater detail. The following observations help to clarify the
characteristics of the three measures that I have defined (MB, MD,
CF):

Characteristics of Belief Measures

(1) Range of degrees:
(a) 0< MB[A,e] < 1.
(b) 0<MD[h,e]< 1.
(¢) —1<CF[he]< +1.

(2) Evidential strength and mutually exclusive hypothesest:
If 71 is shown to be certain [P(hle)=1]:

tThere is a special case of characteristic (2) that should be mentioned. This is the case of
logical truth or falsity where P(#1e)=1 or P(%11e)=0, regardless of e. Popper hasalso suggested
a quantification scheme for confirmation [Popper, 1959] in which he uses —1 < C[h,e] <
+1, defining his limits as:
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(2) MB[A,e]=[1- P(h)]/[1 - P(h)]=1.
(b) MDJ[#,e]=0.
() CF[h,e]=1.

If the negation of 7 is shown to be certain [P(not.kle)=1]:

(a) MB[A,e]=0.
(b) MD[%,e]=[0— P(h)]/[0— P(h)]=1.
(c) CFlh,e]= —1.

Note that this gives MB[not.k,e] =1 if and only if MD[A,e]=1 in accordance
with the definitions of MB and MD above. Furthermore, the number 1 re-
presents absolute Belief (or Disbelief) for MB (or MD). Thus if MB[A,,e] =1
and k, and /, are mutually exclusive, MD [ha,e]=1.

(3) Lack of evidence:
(a) MB[h,e]=0if & is not confirmed by e (i.e., e and 4 are independent
or e disconfirms 4).
(b) MD[%,e]=0if & is not disconfirmed by e (i.e., e and 4 are indepen-
dent or e confirms 4).
(c) CF[r,e]=0 if e neither confirms nor disconfirms / (i.e., € and & are
independent).

We are now in a position to examine Paradox 1 (§ 4.3), the
expert’s concern that although evidence may support a hypothesis
with degree X, it does not support the negation of the hypothesis
with degree 1—X. In terms of our proposed model, this reduces to the
assertion that, when e confirms %:

CF[A,e]+CF[not.h,e] 1.

~1=C[not.h,h]< C[h,e]< C[h,h]=+]1.

This proposal led one observer [Harré, 1970] to assert that Popper’s numbering scheme
“obliges one to identify the truth of a self-contradiction with the falsity of a disconfirmed
general hypothesis and the truth of a tautology with the confirmation of a confirmed
existential hypothesis, both of which are not only question begging but absurd.”” As I shall
demonstrate in § 4.6, we avoid Popper’s problem by introducing mechanisms for approach-
ing certainty asymptotically as items of confirmatory evidence are discovered.
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This intuitive impression is verified by the following analysis:

CF[not.s,e] = MB[not. ,e]—MD[not. 4, e]

o P(not.h|e)— P(not.h)

— P(not.h)
_[1=Ph|e)]~[1-P(h)] _ P(n)—P(hle)
1-P(h) l=Pgh)"
CF[h,e]=MB[h,e]—MD[A,e]
_ P(hle)=P(h)

1- P(h)

Thus,

P(hle)=P(h)  P(h)— P(h|e)

CF[h,e]+CF[not.h,e]= 1—P(h) 1-P(h)

=0.

Clearly this result occurs because (for any % and any e) MB[h,e]=
MDI[not.A,e]. This conclusion is intuitively appealing since it states
that evidence that supports a hypothesis disfavors the negation of the
hypothesis to an equal extent.

We noted earlier that experts are often willing to state degrees of
belief in terms of conditional probabilities but they refuse to follow
the assertions to their logical conclusions (e.g., Paradox 1 above). It
is perhaps revealing to note, therefore, that when the a priori belief
in a hypothesis is small (i.e., P(%) is close to zero), the CF of a
hypothesis confirmed by evidence is approximately equal to its
conditional probability on that evidence:

P(hle)— P(h)

CR#l=MBlA. ] - MBd] ==

— 0~ P(hle),

whereas, as shown above, CF[not.s,e] =~ —P(hle) in this case. This
observation suggests that confirmation, to the extent that it is
adequately represented by CF’s, is close to conditional probability
(in certain cases) although it still defies analysis as a probability
measure.

We believe, then, that the proposed model is a plausible represen-
tation of the numbers an expert gives when asked to quantify the
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strength of his judgmental rules. He gives a positive number (CF>0)
if the hypothesis is confirmed by observed evidence, suggests a
negative number (CF<O0) if the evidence lends credence to the
negation of the hypothesis, and says there is no evidence at all
(CF=0) if the observation is independent of the hypothesis under
consideration. The CF combines knowledge of both P(%) and P(hle).
Since the expert often has trouble stating P(%) and P(hle) in quantita-
tive terms, there is reason to believe that a CF that weights both the
numbers into a single measure is actually a more natural intuitive
concept (e.g., “I don’t know what the probability is that all ravens
are black, but I do know that every time you show me an additional
black raven my belief is increased by X that all ravens are black.”)

If we therefore accept CF’s rather than probabilities from experts,
it is natural to ask under what conditions the physician’s behavior
based upon CF’s is irrational. We know from probability theory, for
example, that if there are # mutually exclusive hypotheses h;, at least
one of which must be true, then £ P(%;|e)=1 for all e. In the case of
certainty factors, we can also show that there are limits on the sums
of CF’s of mutually exclusive hypotheses. Judgmental rules acquired
from experts must respect these limits or else the rules will reflect
irrational quantitative assignments. (Note we assert that behavior is
irrational if actions taken or decisions made contradict the result that
would be obtained under a probabilistic analysis of the behavior.)

Sums of CF’s of mutually exclusive hypotheses have two limits—a
lower limit for disconfirmed hypotheses and an upper limit for
confirmed hypotheses. The lower limit is the obvious value that
results because CF[4,e]>—1 and because more than one hypothesis
may have CF=—1. Note first that a single piece of evidence may
absolutely disconfirm several of the competing hypotheses. For ex-
ample, if there are n colors in the universe and C; is the ith color,
then ARC; may be used as an informal notation to denote the
hypothesis that all ravens have color C;. If we add the hypothesis
ARC, that some ravens have different colors from others, we know
23 P(ARC))=1. Consider now the observation e that there is a raven
of color C,. This single observation allows us to conclude that
CF[ARC;,el=-1 for 1<i<u—1. Thus, since these n—1 hypotheses are
absolutely disconfirmed by the observation e, E’,"l CF[ARC;,e]=
—(n—1). This analysis leads to the general statement that, if k
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mutually exclusive hypotheses #; are disconfirmed by an observa-
tion e:

1

In the colored raven example, the observation of a raven with
Color C, still left two hypotheses in contention, namely ARC, and
ARC,. What, then, are CF[ARC,,e], CF[ARC,,e], and the sum of
CF[ARC,,e] and CF[ARCy,e]? The values of CF[ARC,.,e] and
CF[ARC,e] are intimately related with the Paradox of the Ravens
as discussed in Appendix 4.A. The limit on their sum, however, is
important here as we attempt to characterize the rational use of
CF’s. In fact, it can be shown that, if £ mutually exclusive hypo-
theses 4; are confirmed by an observation e, the sum of their CF’s
does not have an upper limit of & but rather:

k
CFlh,e]l> —k (for A; disconfirmed by e).
=1 :

é CFlh,el<1 (for h; confirmed by e).

i=1
In fact, 2{-2 1 CF[h;e] is equal to 1 if and only if k=1 and e implies
hy with certainty, but the sum can get arbitrarily close to 1 for small
k and large n. The analyses that lead to these conclusions are in-
cluded as Appendix 4.B.

The last result allows us critically to analyze new decision rules given
by experts. Suppose for example, we are given the following rules:
CF[h,,e]=.7 and CF[h,,e]=.4 where hy is “The organism is a
streptococcus”, h, is “The organism is a staphylococcus”, and e is
“The organism is a gram positive coccus growing in chains.” Since % 1
and %, are mutually exclusive, the observation that b2+ CF[h;e] > 1
tells us that the suggested certainty factors are inappropriate. The
expert must either adjust the weightings or we must normalize them
so that their sum does not exceed 1. In other words, because
behavior based on these rules would be irrational, we must change
the rules.

In concluding this section, I shall briefly examine Térnebohm’s
criteria for acceptability of a theory of confirmation [Tomebohm,
1966]. He states that:

It would be desirable to have a measure of evidential strength or degree of
confirmation Dc satisfying the following conditions:
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Dcl. If E' L-implies H, then Dc(HIE)=max.

Dc2. If E Limplies not H, the Dc(H|E)=min.

Dc3. Dc(HE|E) = De(H|E)

Dc4. If E'and H are independent of each other, then Dc(HIE)=0.

Unfortunately it does not seem possible to construct a reasonable measure
satisfying all these conditions . . .

Note that CF[H,E] satisfies Dcl, Dc2, and Dc4 for max=1 and
min=—1. However, it can be shownt that CF[HE,E] =CF[H,E] if and
only if P(EIH)=1. Thus, despite its intuitive appeal, the CF we have
defined fails to satisfy all four acceptability criteria suggested by
Tomebohm. I shall point out later, however, that the conventions we
have adopted for combining CF’s allow us to satisfy Dc3.

4.6 Model as Approximation Technique

Certainty factors provide a useful way to think about confirma-
tion and the quantification of degrees of belief. However, I have not
yet described how the CF model can be usefully applied to the
medical diagnosis problem. The remainder of this chapter will ex-
plain conventions that we have introduced in order to utilize the
certainty factor model. Our starting assumption is that the numbers
given us by experts who are asked to quantify their degree of Belief
in decision criteria are adequate representations of the numbers that

11 shall demonstrate the result for £ confirming H. The proof for E disconfirming H is
similar.
CF[HE,E] = MB[HE E] —MD|HE,E]
=MB|HE,E1 -0
P(HEE) — P(HE) P(HIE) — P(HE)
1 —-P(HE) 1 —-P(HE)

But
CF[H.E] = MB[H,E] - MD|[H,E]
=MB[H,E] -0
_P(HIE) - P(H)
T 1-PH)

Thus CF|HE,E] = CF[H,E] if and only if:

P(H) = P(HE) = P(E H) P(H)
ie,PEIH) =1
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would be calculated in accordance with the definitions of MB and
MD if the requisite probabilities were known.

In § 4.2, when discussing Bayes’ Theorem, I explained that I
would like to devise a method that allows us to approximate the
value for P(D;|E) solely from the P(D;ISy), where D; is the ith
possible diagnosis, S is the kth clinical observation, and E is the
composite of all the observed ;. I have explained why probabilities
are inadequate representations of the decision rules with which we
wish to deal. Thus our goal should be rephrased in terms of certainty
factors as follows:

Suppose that MB[D;,S;] is known for each Sk, MD[D;,S;.] is known for each
Sk, and E represents the conjunction of all the Sk . Then our goal is to calculate
CF[D;,E] from the MB’s and MD’s known for the individual Si’s.

Suppose that £ = S, &S, , and that E confirms D;. Then:

P(D|E)—P(D,)
I—P(Di)

_ P(D|S,&S,)— P(D;)

B 1-P(D,)

CF[D, E]=MB[D,E]-0=

Clearly there is no exact representation of CF[D;,S; &S,] purely in
terms of CF[D;,S;] and CF[D;,S,]. As was true for the discussion
of Bayes’ Theorem in § 4.2, the relationship of S; to S,, within D;
and all other diagnoses, needs to be known in order to calculate
P(D;|S; &S, ). Furthermore, the CF scheme adds one complexity not
present with Bayes’ Theorem because we are forced to keep MB’s
and MD’s isolated from one another.t I shall therefore introduce an
approximation technique for handling the net evidential strength of
incrementally acquired observations. The combining convention
must satisfy the following criteria (where E, represents all confirming
evidence acquired to date, and E_represents all disconfirming evi-
dence acquired to date):

TSuppose S, confirms D; (MB>0) but S, disconfirms D; (MD>0). Then consider
CF[D;S,&S,]. In this case, CF[D;,S, &S,] must reflect both the disconfirming nature of
S, and the confirming nature of §,. Although these measures are reflected in the com-
ponent CF’s (it is intuitive in this case, for example, that CF[D;S,] < CF[DyS,&S,] <
CF[DS, 1), we shall demonstrate that it is important to handle component MB’s and MD’s
separately in order to preserve commutativity (see item (3) of Defining Criteria).
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Defining Criteria

(1) Limits:

@)

€))

@

(a) MB[A,E.] increases towards 1 as confirming evidence is found,
equalling 1 only if a piece of evidence logically implies 7
with absolute certainty.

(b) MD[A,E_] increases toward 1 as disconfirming evidence is found,
equalling 1 only if a piece of evidence logically implies
not.h with certainty.

(c) CF[hE] <CH[hE&E,] <CF[AnL.].

These criteria reflect our desire to have the measure of Belief ap-
proach certainty asymptotically as partially confirming evidence is
acquired, and to have the measure of Disbelief approach certainty
asymptotically as partially disconfirming evidence is acquired.

Absolute confirmation or disconfirmation:

(a) If MB[A,E.]=1, then MD[AE ]=0 regardless of the disconfirming

evidence in E_;i.e., CF[h,E,] = 1.

(b) If MD[Ah,E 1=1, then MB[A,E,]=0 regardless of the confirming evi-

dence in E,;i.e., CF[A,E ]=—1.

(c) The case where MB[A,E,]=MD[A,E ]=1 is contradictory and hence

the CF is undefined.

Commutativity:

If S, &S, indicates an ordered observation of evidence, first S; and then

Sz i

(a) MB[h,S,&S,]=MB[h,S,&S,].

(b) MD[h,Sl&Sg]=MD[h,S2&S1 ] .

(¢) CF[h,S,&S,]=CF[h,S,&S,].

The order in which pieces of evidence are discovered should not
affect the level of Belief or Disbelief in a hypothesis. This criterion
assures that the order of discovery will not matter.

Missing information:

If S, denotes a piece of potential evidence, the truth or falsity of which is

unknown:

(a) MB[#, S,&S,]=MB[A,S].

(b) MDJ#4,S,&S;]=MDI#, S}

(¢) CF[h,S,&S,]=CF[h,S,].

The decision model should function by simply disregarding rules of
the form CF[Ar,S,]=X if the truth or falsity of S, cannot be
determined.

There are a number of observations to be made on the basis of
these criteria. For example, items (1) and (2) indicate that the MB of
a hypothesis never decreases unless its MD goes to 1. Similarly the
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MD never decreases unless the MB goes to 1. In § 4.5, where it was
always true that MB=0 or MD=0, it was always the case that either
CF=MB-0 or CF=0-MD. As evidence is acquired sequentially, how-
ever, both the MB and MD may become nonzero. Thus CF=MB-MD
is an important indicator of the net Belief in a hypothesis in light of
current evidence. Furthermore, a certainty factor of zero may indi-
cate either absence of both confirming and disconfirming evidence
(as discussed in § 4.5), or the observation of pieces of evidence that
are equally confirming and disconfirming. In effect CF[/,e]=0 is the
“don’t know more than I did before” value (i.e., equally confirmed
and disconfirmed). Negative CF’s indicate that there is more reason
to disbelieve the hypothesis than to believe it. Positive CF’s indicate
that the hypothesis is more strongly confirmed than disconfirmed.

It is important also to note that, if E=E,&E , then CF[AE]
represents the certainty factor for a complex new rule that could be
given us by an expert. CF[4,E], however, would be a highly specific
rule customized for the few patients satisfying all the conditions
specified in E, and E . Since the expert gives us only the component
rules, we seek to devise a mechanism whereby a calculated cumula-
tive CF[4,E], based upon MB[4,E,] and MD[%,E. 1, gives a number
close to the CF[%,E] that would be calculated if all the necessary
conditional probabilities were known.

With these comments in mind, I therefore present the following
four combining functions, the first of which satisfies the criteria that
I have outlined. The other three functions are necessary conventions
for implementation of the model.

Combining Functions

(1) Incrementally acquired evidence:t

0if MD[A,5,&S,] =1,

MB[A,S,) + MB[A,S,](1 —MB[A,S,]) otherwise.
0if MB[h,S,&S,] =1,

MD[#,5,] + MD[#,S,]1(1 - MD[A,S, ]) otherwise.

(a) MB[#, S,&S,] = {

(b) MD[4,S,&S,] =

T1It has been pointed out that the first of these functions is equivalent to:
MB[#,8,&S,]—MB[#4,S,]
1-MB[4,S,] ’

MBI[#, S,]=

Thus this combining function parallels our original definition of an MB, but with MB’s
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(2) Conjunctions of hypotheses:
(2) MB[h,&h,, E]=min(MB[h,, E], MB[,, E]).
(b) MD[%,&h, E]=max(MD[k,, E], MD[h,, E]).

(3) Disjunctions of hypotheses:
(a) MB[A,Vh,, E]=max(MB[h,, E], MB[A,, E]).
(b) MD[#,Vh,, E]=min(MD[#,, E], MD[h,, E]).

(4) Strength of evidence:

If the truth of falsity of a piece of evidence S, is not known with
certainty, but a CF (based upon prior evidence F) is known reflecting
the degree of Belief in ;, then if MB'[,S;] and MD'[%,S; ] are the
degrees of Belief and Disbelief in # when S is known to be true with
certainty (i.e., these are the decision rules acquired from the expert)
then the actual degrees of Belief and Disbelief are given by:

(a) MB[#, S,]=MB'[4, S,]- max(0, CF[S}, E]).

(b) MD[#4, S,]1=MD'[4, S,]- max(0, CF[S,, E]).
This criterion relates to our statement early in § 4.5 that evidence in
favor of a hypothesis may itself be an hypothesis subject to con-
firmation. Suppose, for instance, you are in a darkened room when
testing the generalization that all ravens are black. Then the observa-
tion of a raven that you think is black, but that may be navy blue or
purple, is less strong evidence in favor of the hypothesis that all
ravens are black than if the sampled raven were known with certainty
to be black. Here the hypothesis being tested is “All ravens are
black” and the evidence is itself an hypothesis, namely the uncertain
observation that “This raven is black.”

Function (1) simply states that, since an MB (or MD) represents a
proportionate decrease in Disbelief (or Belief), the MB (or MD) of a
newly acquired piece of evidence should be applied proportionately
to the Disbelief (or Belief) still remaining. Function (2)(a) indicates
that the measure of Belief in the conjunction of two hypotheses is
only as good as the Belief in the hypothesis that is believed less
strongly, whereas Function (2)(b) indicates that the measure of
Disbelief in such a conjunction is as strong as the Disbelief in the
most strongly disconfirmed. Function (3) yields complementary re-
sults for disjunctions of hypotheses. The corresponding CF’s are

substituted for the probability measures that we lack. Note also that this formula bears the
same relationship to our MB definition as the sequential diagnosis form of Bayes’ Theorem
does to the simple Bayes formula (§ 4.2).
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merely calculated using the definition CF=MB-MD. The reader is left
to satisfy himself that Function (1) satisfies the Defining Criteria.
(Note that MB[4,S, ] =MD[#,S,1=0 when examining Criterion (4).)

Functions (2) and (3) are needed in the use of Function 4).
Consider, for example, a rule such as:

CF, [h,SI&S2&(S3V S4)] =X

i.e., in our format, a rule such as:

IF: 1) THE STAIN OF THE ORGANISM IS GRAM NEGATIVE, AND
2) THE MORPHOLOGY OF THE ORGANISM IS ROD, AND
3) [A-THE AEROBICITY OF THE ORGANISM IS AEROBIC, OR
B - THE AEROBICITY OF THE ORGANISM IS UNKNOWN
THEN: THERE IS SUGGESTIVE EVIDENCE (.6) THAT THE CLASS OF
THE ORGANISM IS ENTEROBACTERIACEAE

Then, by Function (4):
CF[1,5,&5,8(S; V S,)]= X-max(0,CF[5,&S,&(S; V S,),E])
= X-max(0,MB[$,&5,&(S; V S,),E]
—MD[5,&S,&(S; V S,),E]).
Thus, we use Functions (2) and (3) to calculate:
MB(S,&5,&(S; V S,), E]=min(MB[S,, E], MB[S,, E], MB[S; V S, E])
=min(MB[S,,E], MB[S,, E],

max(MB[S;, E], MB[S,, E1)).

MDIS,; &S, &(S; V S4),E] is calculated similarly.
It is also worth noting that Function (2) gives, for H confirmed by
E:

CF[HE,E] =MB[HE,E] — MD[HE,E]
= min(MB[H,E] MB|E,E]) — max(MD[H,E] MD[E,E])
=min(MB[H,E,1) — max(MD[H,£] ,0)
=MB[H,E] ~MDI[H,E]
=CF[H,E]
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Thus the use of an approximation via Function (2) allows us to
satisfy Dc3 of Tomebohm’s criteria (see end of § 4.5) and hence to
satisfy all his requirements for a quantitative approach to confirma-
tion.

An analysis of Function (1) in light of the probabilistic definitions
of MB and MD does not prove to be particularly enlightening. The
assumptions implicit in this function include more than an accep-
tance of the independence of S; and S,. The function was conceived
purely on intuitive grounds in that it satisfied the four Defining
Criteria I have listed. However, some obvious problesm are present.
For example, the function always causes the MB or MD to increase,
regardless of the relationship between new and prior evidence. Yet
Salmon has discussed an example from subparticle physics [Salmon,
1973] in which either of two observations taken alone confirm a
given hypothesis, but their conjunction disproves the hypothesis
absolutely! Our model assumes the absence of such aberrant situa-
tions in the field of application for which it is designed. The problem
of formulating a more general quantitative system for measuring
confirmation is well recognized and referred to by Harré [Harré,
1970] : “The syntax of confirmation has nothing to do with the logic
of probability in the numerical sense, and it seems very doubtful if
any single, general notion of confirmation can be found which can be
used in all or even most scientific contexts.” Although we have
suggested that perhaps there is a numerical relationship between
confirmation and probability, we agree that the challenge for a
confirmation quantification scheme is to demonstrate its usefulness
within a given context, preferably without sacrificing human intui-
tion regarding what the quantitative nature of confirmation should
be.

Our challenge with Function (1), then, is to demonstrate that it is
a close enough approximation for our purposes. We have attempted
to do so in two ways. First we have implemented the function as part
of the MYCIN system (§ 4.7) and have demonstrated that the
technique models the conclusions of the expert from whom the rules
were acquired. Second, we have written a program that allows us to
compare CF’s computed both from simulated real data and by using
Function (1). Our notation for the following discussion will be as
follows:
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CF*[#,E] = the computed CF using the definition of CF from § 4.5 Ge.,
“perfect knowledge” since P(k|E) and P(h) are known)

CF[nE] =the computed CF using Function (1) and the known MB’s and
MD’s for each Sy where E is the composite of the S’s (ie.,
P(h|E) not known but P(klSy) and P(%) known for calculation of
MB[A,S%] and MD[%,S:])

The program was run on sample data simulating several hundred
“patients.” Clearly the question to be asked was whether CF[A,E] is
a good approximation of CF* [, E]. Figure 4-1 shows a graph sum-
marizing our results. For the vast majority of cases, the approxima-

L CF*[h,E]
% 1.0 /
T /

T 038 ® /

% /. T 02 CFIh,E]

/ ® 4 -os

/ L =10

Figure 4-1: Chart demonstrating the degree of agreement between CF and CF* for a sample
data base. CF is an approximation to CF*. The terms are defined in the text.
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tion does not produce a CF[A,E] radically different from the true
CF*[h,E]. In general, the discrepancy is greatest when Function (1)
has been applied several times (i.e., several pieces of evidence have
been combined). This result is in keeping with Zadeh’s observation
from fuzzy logic that “the more steps there are in the proof, the
fuzzier the result” [Zadeh, 1974]. The most aberrant points, how-
ever, are those that represent cases in which pieces of evidence were
strongly interrelated for the hypothesis under consideration (termed
“conditional nonindependence”). This result is expected because it
reflects precisely the issue that makes it difficult to use Bayes’
Theorem for our purposes.

Thus I should make it clear that we have not avoided many of the
problems inherent with the use of Bayes’ Theorem in its exact form.
We have introduced a new quantification scheme which, although it
makes many assumptions similar to those made by subjective Bayesi-
an analysis, permits us to utilize criteria as rules and to manipulate
them to the advantages described in § 4.3. In particular, the quantifi-
cation scheme also allows us to consider confirmation separately
from probability and thus to overcome some of the inherent prob-
lems that accompany an attempt to put judgmental knowledge into a
probabilistic format. Just as Bayesians who use their theory wisely
must insist that events be chosen so that they are independent
(unless the requisite conditional probabilities are known), we must
insist that dependent pieces of evidence be grouped into single rather
than multiple rules. As Edwards has pointed out [W. Edwards,
19721, a similar strategy must be used by Bayesians who are unable
to acquire all the necessary data:

... [An approximation] technique is the one now most commonly used. It is
simply to combine conditionally non-independent symptoms into one grand
symptom, and obtain [quantitative] estimates for that larger more complex
symptom.

The system therefore becomes unworkable for applications in which
large numbers of observations must be grouped in the PREMISE of a
single rule in order to insure independence of the decision criteria. In
addition, we must recognize logical subsumption when examining or
acquiring rules and thus avoid counting evidence more than once.
For example, if S, implies S,, then CF[%,S, &S, 1=CF[4,S; ] regard-
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less of the value of CF[4,S,]. Function (1) does not “know” this.
Rules must therefore be acquired and utilized with care (see § 6.3).

The justification for our approach therefore rests not with a claim
of improving on Bayes’ Theorem but rather with the development of
a mechanism whereby judgmental knowledge can be efficiently rep-
resented and utilized for the modeling of medical decision making,
especially in contexts where (a) statistical data are lacking, (b)
inverse probabilities are not known, and (c) conditional indepen-
dence can be assumed in most cases.

4.7 Mycin’s Use of Model

Formal quantification of the probabilities associated with medical
decision making can become so frustrating that some investigators
have looked for ways to dispense with probabilistic information
altogether [Ledley, 1973]. Diagnosis is not a deterministic process,
however, and we believe that it should be possible to develop a
quantification technique that approximates probability and Bayesian
analysis and that is appropriate for use in those cases where formal
analysis is difficult to achieve. The certainty factor model that we
have introduced is such a scheme. It has been implemented as a
central component of the MYCIN system. The program uses cer-
tainty factors to accumulate evidence and to decide upon likely
identities for organisms causing disease in patients with bacterial
infections. A therapeutic regimen is then determined—one that is
appropriate to cover for the organisms requiring therapy.

All of the program’s knowledge is stored in decision rules such as
those described in § 4.2 and 4.3. Each rule has an associated
certainty factor that reflects the measure of increased Belief or
Disbelief of the expert who suggested the rule. The capturing of such
quantitative medical intuitions has been the subject of recent investi-
gations by others [Card, 1970b] but, as we have noted, our approach
has been simply to ask the expert to rate the strength of the
inference on a scale from 1 to 10 (see § 4.3).

MYCIN remembers the alternate hypotheses that are confirmed or
disconfirmed by the rules for inferring an organism’s identity. With
each hypothesis is stored its MB and MD, both of which are initially
zero. When a rule for inferring identity is found to be true for the
patient under consideration, the ACTION portion of the rule allows
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either the MB or the MD of the relevant hypothesis to be updated
using the first Combining Function (§4.6). When all applicable rules
have been executed, the final CF may be calculated, for each hypoth-
esis, using the definition CF=MB—-MD. These alternate hypotheses
may then be compared on the basis of their cumulative certainty
factors. Hypotheses that are most highly confirmed thus become the
basis of the program’s therapeutic recommendation.

Suppose, for example, that the hypothesis /; that the organism is
a streptococcus has been confirmed by a single rule with a CF=.3.
Then, if E represents all evidence to date, MB[H,,E]=.3 and
MDI[H,,E1=0. If a new rule is now encountered which has CF=.2 in
support of Hy, and if E is updated to include the evidence in the
PREMISE of the rule, we now have MB[H,,E]1=.44 and
MDI[H, ,E1=0. Suppose a final rule is encountered for which CF=—.1.
Then if E is once again updated to include all current evidence, we
use Function (1) to obtain MB[H, ,E]1=.44 and MD[H, ,E]=.1. If no
further system knowledge allows conclusions to be made regarding
the possibility that the organism is a streptococcus, we calculate a
final result that CF[H,,E]1=.44—.1=.34. This number becomes the
basis for comparison between H, and all the other possible hypothe-
ses regarding the identity of the organism.

It should be emphasized that this same mechanism is used for
evaluating all knowledge about the patient, not just the identity of
pathogens. When the user answers a system-generated question, the
associated certainty factor is assumed to be +1 unless he explicitly
modifies his response with a CF (multiplied by 10) enclosed in
parentheses. Thus, for example, the following interaction might
occur (MYCIN’s prompt is in lower-case letters):

14) Did the organism grow in clumps, chains, or pairs?
**CHAINS (6) PAIRS (3) CLUMPS (-8)

This capability allows the system automatically to incorporate the
user’s uncertainties into its decision processes. A rule that referenced
the growth conformation of the organism would in this case find:

MB|chains, £]=0.6, MD]|chains, E]=0,
MB|[pairs, E]=0.3, MD|pairs, E]=0,
MB[clumps, E]=0, MD)|clumps, £]=0.8.
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Consider, then, the sample rule we introduced in §4.2:
CF[H], S]&S2&83] =O.7,

where H, is the hypothesis that the organism is a streptococcus, S; is
the observation that the organism is gram positive, S, that it is a
coccus, and S3 that it grows in chains. Suppose gram stain and
morphology were known to the user with certainty so that MYCIN
has recorded:

CF[S,E]=1, CF[S,E]=1.
In the case above, however, MYCIN would find that:
CF[S;,E]=0.6—0=0.6.

Thus, it is no longer appropriate to use the rule in question with its
full confirmatory strength of .7. That CF was assigned by the expert
on the assumption that all three conditions in the PREMISE would
be true with certainty. The modified CF is calculated using the
fourth Combining Function (§4.6):

CF[H,,S,88,8.S;]=MB[ H,, S,&S,&S;] - MD[ H,, §,&S,&S;]
=0.7-max(0, CF[ $,&S,&S,, E]) 0.

Calculating CF[S; &S, &S5,E] using the second Combining Function,
this gives:

CF[H,,8,85,88,]=0.7-0.6—0
=0.42-0,
ie.,
MB[H,, $,&S,85,]=0.42
and

MD[ Hl’ Sl&Sz&S3] =(,

Thus, the strength of the rule is reduced to reflect the uncertainty
regarding S3. Function (1) is now used to combine .42 G.e.,
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MB[H,S;&S,&S3]) with the previous MB for the hypothesis that
the organism is a streptococcus.

I have shown that the numbers thus calculated are approximations
at best. Hence, it does not seem justifiable simply to accept as
correct the hypothesis with the highest CF after all relevant rules
have been tried. Therapy is therefore chosen to cover for all identi-
ties of organisms that account for a sufficiently high proportion of
the possible hypotheses on the basis of their CF’s. This is accom-
plished by ordering them from highest to lowest and selecting all
those on the list until the sum of their CF’s exceeds z (where z is
equal to .9 times the sum of the CF’s for all confirmed hypotheses).

Finally, it should be noted that our definition of CF’s allows us to
validate those of our rules for which frequency data become avail-
able. This will become increasingly important as the program be-
comes a working tool in the clinical setting where it can actually be
used to gather the statistical data needed for its own validation. In
the meantime, validation will necessarily involve the comments of
recognized infectious disease experts who will be asked to evaluate
the program’s decisions and advice. Early experience with a limited
set of rules has provided suggestive evidence that MYCIN will some-
day give advice similar to that suggested by infectious disease experts
[Shortliffe,- 1974b]. We are therefore gaining confidence that the
certainty factor approach will continue to prove itself as the number
of decision rules increases and we acquire rules from additional
infectious disease experts.

Appendices
APPENDIX 4.A PARADOX OF RAVENS

In order to examine the Paradox of the Ravens (§ 4.4), I introduce
the following informal notation:

iRB - the hypothesis that exactly 7 ravens are black

ARB - the hypothesis that all ravens are black (i.e., yRB, where y = the
number of ravens)

inBnR - the hypothesis that exactly i nonblack objects are nonravens

AnBnR - the hypothesis that all nonblack objects are nonravens (i.e.,
znBnR where z = the number of nonblack objects)
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BR - the observation of a raven that is found to be black
nBnR - the observation of a nonblack object that is found to be a
nonraven

The paradox, then, is based on the observation that it is counter-
intuitive to assert that CF[ARB,nBnR] =CF[AnBnR,nBnR]. Yet our
definition of a CF quickly leads to the conclusion that the equality
does hold since ARB is logically equivalent to AnBnR and thus
P(ARB[nBnR)=P(AnBnR[nBnR). It may therefore be tempting to
assert that the certainty factor model of confirmation has failed to
provide insight into the paradox.

However, as Suppes has pointed out [Suppes, 1966a] , the reason
the paradox occurs is because we are convinced that “we are right in
our intuitive assumption that we should look at randomly selected
ravens and not randomly selected nonblack things in testing the
generalization that all ravens are black.” Expressed in terms of
certainty factors, our intuition is that CF [ARB,BR] >>
CF[ARBnBnR] and, in fact, that CF[ARB,nBnR]=0. Thus we
prefer to sample ravens rather than nonblack objects in testing the
hypothesis ARB, i.e., we feel that a black raven is significantly
greater evidence in favor of the hypothesis than is a green vase.

Let us use our definition of CF, then, to calculate both
CF[ARB,BR] and CF[ARB,nBnR]. We define:

y = the number of ravens in the universe

z = the number of nonblack objects in the universe
We then make the following two assumptions:

(1) zzy

This assumption, although clearly true for the example at hand, may
seem bothersome as a requirement for the analysis. However, it can be
shown that, in fact, the paradox is reversed for z<y. Consider, for
example, a universe of 100 ravens and 5 nonblack objects that may or
may not be ravens. In this case observation of a green vase is clearly
better evidence in favor of the hypothesis that all ravens (in this limited
universe) are black than is the observation of a black raven.

Suppes uses another example to make this point [Suppes, 1966a].
Suppose we want to test the generalization that all voters in a specific
district are literate. We can either sample voters and see whether they are
literate or else sample illiterate individuals and check to be sure they are
nonvoters. The preferable strategy seems intuitively to depend upon
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whether there are more voters than illiterate individuals, i.e., on the
relationship between z and y from our example.

(2) We initially have no knowledge regarding either colors of ravens nor
distributions of colors in the universe.
This assumption allows us to state that, before observing any ravens, we
believe all the hypotheses iRB to be equally likely. This amounts to the
assumption of a uniform distribution of the P(JRB) before sampling
begins. The analysis proceeds more easily with this assumption, but it
should be clear that another prior distribution will not alter the qualita-
tive nature of our final result. Thus:

P(iRB) = 1/(y+1)  for Oy
which leads to the conclusion that P(ARB)=P(yRB)=1/(y+1).
Using assumptions (1) and (2) we can also show that:

0 for0<i<zy
P(inBnR) =

1/(p+1) forzy<i<z

The proof is left for you to complete (note that there can be no
fewer than z—y nonravens among the z nonblack objects). It leads to
the conclusion that P(AnBnR)=P(znBnR)=1/(y+1). This is an impor-
tant result since ARB and AnBnR are logically equivalent and we
therefore must require that P(ARB)=P(AnBnR).

From our definitions of certainty factors, we now note that:

CF[ARB,BR] = MB[ARB,BR] —~MD[ARB,BR] = MB[ARB,BR] -0
_P(ARB[BR) — P(ARB) _ P(ARB[BR) — [1/(y+1)]
1 - P(ARB) 1-[1/p+D)]

and:

CF[ARB,nBnR] = MB[ARBnBnR] — MD[ARB,nBnR] = MB[ARB,nBnR] -0
_ P(ARB[nBnR) — P(ARB)

1-P(ARB)
_P(AnBnR[nBnR) — P(AnBnR) _ P(AnBnR[nBnR) — [1/(y+1)]
1 —P(AnBnR) 1-[1/(y+1)]
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Thus we can calculate CF[ARB,BR] if we can derive P(ARB|BR)
and can calculate CF[ARBnBnR] if we can derive P(AnBnR|nBnR).
Both of the requisite conditional probabilities can be found using
Bayes’ Theorem:

P(ARBIBR) =yP(BR|ARB)P(ARB) ; 1 [1/(p+1)]
ZP(BRIRB)P(RB)  Z[ify] [1/(+1)]
1

=2/(y+1) since éi =y(+1)/2
1
P(AnBnRInBnR) = zP(anRlAanR) P(AnBnR)
ZP(nBnR|inBnR) P(inBnR)
1
L[]
2 ] [0+

z 2z

I N )
1 1

2
¥y
i

_ 2z : 2z
22+2zy-y-y* (y+1) (2z)

=2 L = (2)/[H)22)]
y+tl 2z—y

Note that P(ARB|BR) = P(ARB|nBnR) if z=y!
Thus:

CF[ARB,BR] =%/ (lyil[)l]/_(&/l%”)] =1/

and:

_ NG+ - o)) 1
CEMARBRB R TVCT3Y 7=

Note that CF [ARB,BR]>CF[ARB,nBnR] and that the equality
only holds when z=y. Thus, if there are fewer ravens than nonblack
objects, observing a black raven confirms the hypothesis ARB more
strongly than a green vase confirms that all ravens are black.
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But we wished to show that our intuition is correct in suggesting
that CF[ARB,BR] >> CF[ARB,nBnR] and that CF{ARB,nBnR]=0.
As mentioned in the discussion of assumption (1) above, our in-
tuition is tainted by our knowledge of real work. For instance,
we may be willing to accept estimates of ¥ and z such that y= 107
and z=10'. Actually z is undoubtedly larger, but these numbers
will suffice for current purposes. Then:

CF[ARB,BR] = 1/(107) = .0000001

CF[ARBnBnR] = 1/(2:10%5-10!7) ~ 1/(2+10%)
~ 0000000000000005
Clearly CF[ARB,nBnR] is essentially zero, and CF[ARB,BR] is
significantly greater than CF[ARB,nBnR]. Note, however, that these

results are obtained only because we are willing to accept the original
estimates for x and y.

APPENDIX 4.B PROOF OF UPPER LIMIT

I include here a proof of the assertion that the sum of the CF’s
of confirmed but mutually exclusive hypotheses cannot exceed 1.
Since MD[A4,e]=0 for a hypothesis that is confirmed by e,
CF[A,e]1=MB[h,e] when e confirms 4. Suppose there are n mutally

exclusive hypotheses #; confirmed by evidence e. Then we wish to
identify the upper limit on Z% CF[4;.e], i.e., on Z} MB[#;e]. To
simplify the manipulation of symbols, let:
n

a;=P(hle) suchthat Y a <1,

bj=P(h) suchthat > b,<1 and 0<b,<1 foralli.
Then:

a; >b;  for all i since the 4; are confirmed by e

We wish to find the upper limit, if any, on:

n
al-—bi

> MBl#,e]= >\ i
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Proof: We first note that, for n=1:
iai_bi_ai_bi i o
?b,-_TTbig since g; < 1.
For n>1, however:
n b n - n
2 ll—b-’<z a’,, : (since H(l—bj)<1)

' (1-5) I (1-8) !

J#i

2(“ b) Zai_ibi
H(l—b) Cfla-sy

But:
7 n n n n n
Ha-5)=1-3 5+ 3 S66-3 3 3 bhh+
i=1 i=1j i i=1js i k#j*i
n n
SESTTD) Zb.-b,(l— 3 bk)
i=1 i=1 i k#j=i

n

+222 Z b,-b,bkb,(l— S bm)+...,

i=1 j#i ktjtilekejri melst ket )i

And since Eb <1,1 Eb ;>0 in all terms above. Thus H(l—b ) >
1-2"b;. Therefore:

ﬂ

2 1_1[;)i< z e

II(1-5)
~Sb 1= .
£ Za ,,Z 2 (since 2a,~<1)
1-3 5 l—zb,

=il

Thus we have demonstrated that 1 is the upper limit for the sum of
the CF’s of confirmed mutually exclusive hypotheses.
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The rather weak inequality we have shown is better understood,
however, if we examine a special case. Suppose there are m mutually
exclusive hypotheses such that Z7" P(%;)=1. We assume that each’is
initially equally likely, i.e., P(h;)=1/m. Suppose now that first n of
the m hypotheses are confirmed by the evidence e. Then:

S CF[h,e]= S MB[h,e]— S MD[h,e]

_2 P(hle)— P(h) Z P(hle)—1/m
=Py &~ 1-1/m

=» '”Pf:"'_?_l --L [mip(h,./e)—n]

mi P(hle)—n

——— <1

This interesting result shows that the sum is equal to 1 only if ; is
taken to be certain on the basis of ¢ and when n=1. If only two
hypotheses remain possible after e has been observed and all the
others have been ruled out with certainty, Zf P(h;le)=1 but
21 CF[h;,el=(m—2)/(m—1) and is therefore less than 1.
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